
Dr. Syed Asim Jalal
Department of Computer Science

University of Peshawar

Data Structures and Algorithm Analysis

6

Stack Data Structure

2

Stack Data Structure
 Linear Data Structures (linked lists or Arrays)

allow us to insert and delete elements at any
place in the list, i.e. beginning, middle or end.

 In some applications the requirement is to insert
and remove data at one end of the list.

 Stack is a Linear Data Structure where both
addition and removal of elements takes place at
the same end, called the Top of the stack.

Stack of Books Stack of Notes
Stack of Gifts

• Stack in real life:
• stack of books
• stack of plates

• Add new items at the top
• Remove an item from the top
• Can only access element at the top

4

 In Stack data structure the last element inserted
is the first element to be removed.

 This behavior is known as Last-in-First-out (LIFO)

 A stack is an ordered collection of items in which insertions
and deletions are done only at one end, called the Top of the
stack.

E
D
C
B
A

top

 In stack the last-item added is removed first
because it needs to be processed first. So the
concept of removal of item from stack is not same
as deletion, in stack we remove item because we
have to process that item.

 So removal is not a deletion in real sense.

Some Applications of Stack
 Mathematical Expression Evaluation

– Infix, post-fix, expression evaluation

 Memory management
– Stack is used in nested constructs implementation

• Brackets or parenthesis matching

– Stack is used in Recursive function calls

 Backtracking in tree or graphs
– finding paths
– exhaustive searching

 Undo operations

 etc. 8

Operations
 The following are the main operations of Stack

 Push
– It is insertion of an item at Top of Stack
– Every Push operation moves the Top of the

stack to the inserted item.

 Pop
– Removal of an item from top of stack if the stack

is not empty.
– We perform POP because we need to process

the element on the top of the stack.

Other Auxiliary Operations on Stack

 IsEmpty():
– Checks if the stack is empty

• returns TRUE if the stack is empty
• returns FALSE if there is at least one item in the

stack

 IsFull():
– Checks if the stack is Full
– This operation is used ONLY when there is a

limit on the size of the stack
• returns TRUE if the stack is FULL
• returns FALSE otherwise

Stack Implementations

– Static Implementation of Stack
• Implements stack using an Array
• Implementation using array is simple but is not

flexible as the size of the stack has to be decided
before implementation.

– Dynamic Implementation
• Dynamic implementation is done using Linked Lists
• The implementation is complex using structures and

pointers but offers flexibility in terms of size of the
stack.

11

Stack implementation using Array
 Stack implementation using arrays uses

– Max_Size variable to store the maximum number of
elements to be stored in the stack and

– Top variable that points to the index of the top
element.

 The Top is initialised to -1 in the start when the
Stack is empty.

– Initialisation of Top to -1 or 0 depends on the
implementation programming language.

12

Max_Size = 7

Push Operation - Algorithm
 Suppose STACK[Max_Size] is a one dimensional array for

implementing the stack, which will hold the data items. TOP
is the pointer that points to the top most element of the
stack. Let Value is the data item to be pushed.

1. If TOP = Max_Size – 1 // Check Over Flow condition
a) Display “The Stack is FULL”
b) Exit

2. TOP = TOP + 1
3. STACK[TOP] = Value
4. Exit

14

Pop Operation - Algorithm
 Suppose STACK[Max_Size] is a one dimensional array for

implementing the stack, which will hold the data items. TOP
is the pointer that points to the top most element of the
stack. Value is the popped (or deleted) data item from the
top of the stack.

1. If TOP < 0 // Check underflow condition
a) Display “The Stack is empty”
b) Exit

2. Value = STACK[TOP]
3. TOP = TOP - 1
4. Exit

15

One example implementation of stack in C
#include<stdio.h>
#include<conio.h>

#define MAXSIZE 100

struct stack
{

int stack[MAXSIZE];
int Top;

};

void main()
{

struct stack *sp;
sp->Top=–1;

…
push(sp);
push(sp);
pop(sp);

void push(struct stack *ptr)
{

int item;
if (ptr->Top == MAXSIZE–1)
{

printf(“\nThe Stack Is Full”);
getch();

}
else

{
printf(“\nEnter The Element = ”);
scanf(“%d”,&item);
ptr->stack[++ptr->Top]=item;

}
}

16

Implementation detail
void pop(struct stack *ptr)
{

int item;
if (ptr ->Top == -1)

printf(“\nThe Stack Is Empty”);
else
{

item= ptr ->stack[ptr ->Top--];
printf(“\nThe Poped Element Is = %d”,item);

}
}

17

 Next

– Stack implementation using Linked List
– Conversion of Infix, Prefix and Post-fix expressions

using Stack

18

	Slide Number 1
	Slide Number 2
	Stack Data Structure
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Some Applications of Stack
	Operations
	Other Auxiliary Operations on Stack
	Stack Implementations
	Stack implementation using Array
	Slide Number 13
	Push Operation - Algorithm
	Pop Operation - Algorithm
	One example implementation of stack in C
	Implementation detail
	Slide Number 18

